لطفا صبر کنید...

آموزش صفر تا صد یادگیری ماشین

بلک فرایدی: رونمایی از کامل‌ترین و جامع‌ترین
آموزش یادگیری ماشین ایران

شروع ثبت‌نام با بیشترین تخفیف سال: بلک فرایدی ۱۴۰۴

00روز
00ساعت
00دقیقه
00ثانیه
هولوسن ضمانت می‌کند که کامل‌ترین و جامع‌ترین آموزش کاربردی یادگیری ماشین در ایران را ارائه می‌کند.
اگر در کل ایران، دوره مشابهی پیدا کردید، این آموزش برای شما، ۱۰۰٪ رایگان می‌شود.
سابقه کیفیت سایر آموزش‌های هولوسن، قوی‌ترین دلیل است.
درصد پیشرفت دوره : 70٪

دوره در حال ضبط و انتشار است

🧠 یادگیری ماشین چیست؟

یادگیری ماشین (ML) مجموعه‌ای از روش‌ها و الگوریتم‌هاست که به کامپیوترها اجازه می‌دهد از داده‌ها الگو بیاموزند، پیش‌بینی کنند و تصمیم بگیرند. به جای اینکه همه مراحل را برنامه‌نویسی کنیم، با الگوریتم‌های ML به سیستم‌ها یاد می‌دهیم که از تجربه و داده یاد بگیرند.
کاربردهای یادگیری ماشین شامل موارد زیر است:

  • تشخیص تصویر، صدا و چهره
  • پیش‌بینی روندهای بازار و فروش
  • فیلتر کردن اسپم و تشخیص تقلب
  • پیشنهاد هوشمند محتوا (Recommendation Systems)
  • تحلیل رفتار کاربران و شخصی‌سازی خدمات
  • مدل‌سازی پیچیده در علوم و صنعت

یادگیری ماشین یکی از اصلی‌ترین شاخه‌های هوش مصنوعی است که به سیستم‌ها توانایی یادگیری از داده‌ها بدون برنامه‌ریزی مستقیم را می‌دهد. امروزه الگوریتم‌های یادگیری ماشین در همه جا حضور دارند؛ از موتورهای جست‌وجو و شبکه‌های اجتماعی گرفته تا خودروهای خودران، سیستم‌های پزشکی و ابزارهای مالی.


این دوره به‌صورت جامع و مرحله‌به‌مرحله طراحی شده تا شما را از پایه تا اجرای پروژه‌های واقعی یادگیری ماشین پیش ببرد.

سر فصل‌های دوره (توشه مسیر)

مسیر یادگیری یادگیری ماشین در هولوسن چطور پیش میرود؟ از اینجا ببینید: 👇

در گام اول به صورت کامل به پایتون مسلط می‌شویم. دروازه ورود به هوش مصنوعی، پایتونه! کاری میکنم که یک شوالیه قدرتمند پایتون بشی.

  1. بیا شروع کنیم) شکستن سد برنامه نویسی
  2. قدم صفرم در برنامه نویسی
  3. تاریخچه زبان‌های برنامه‌نویسی
  4. محیط توسعه
  5. متغیر
  6. سینتکس
  7. نام گذاری صحیح
  8. کامنت
  9. عملگر
  10. ورودی خروجی
  11. الگوریتم و فلوچارت
  12. ساختارهای تصمیم
  13. ساختار تکرار
  14. آرایه
  15. تابع
  16. سرچ
  1. این دوره مناسب چه کسانی است؟
  2. از کجا بدونم نتیجه میگیرم؟
  3. مباحث اصلی دوره
  4. ۱۰۵ پروژه ریز و درشت
  5. کاربردهای پایتون
  6. بازار کار پایتون در ایران
  7. بازار کار پایتون در خارج
  8. شرکت‌هایی که از پایتون استفاده می‌کنند
  9. چقدر طول میکشه پایتون رو یاد بگیرم؟
  10. رفرنس‌های مطالعاتی پایتون
  1. گیدو ون روسوم
  2. شروع ماجرا
  3. تولد پایتون
  4. اهداف اولیه
  5. انتشار اولین نسخه
  6. رشد و پیشرفت
  7. پایتون 3
  8. جامعه و کاربردها
  9. گیدو و بازنشستگی
  10. اعضای جامعه پایتون شامل چه کسانی می‌شوند؟
  11. ریپازیتوری رسمی پایتون روی گیت‌هاب
  12. وبسایت رسمی پایتون
  13. ساخت پروژه به زبان پایتون
  1. زبان‌های کامپایلری
  2. زبان‌های مفسری
  3. مفسر پایتون
  4. چرا نیاز به نصب Python داریم؟
  5. اجزای اصلی نرم‌افزار Python
  6. دانلود پایتون
  7. ورژن یعنی چه؟
  8. تکست ادیتور / کد ادیتور / IDE
  9. نصب پای‌چارم
  10. ساخت پروژه در پای‌چارم
  11. نصب Visual Studio Code
  12. ساخت پروژه در VSCode
  13. ساخت اصولی پروژه
  14. نام‌گذاری صحیح
  15. آدرس‌دهی صحیح
  16. آشنایی با محیط پای‌چارم
  17. آشنایی با محیط وی اس کد
  18. سینتکس پایتون
  19. کلیدهای میانبر در پای‌چارم
  20. پروژه (۱) - نمایش پیام خوش‌آمدگویی به کارمندان
  21. برنامه‌نویسی روی موبایل!
  22. پایتون روی اندروید
  23. پایتون روی iOS
  24. پایتون آنلاین
  25. خروجی کار؟ (Console)
  1. متغیر چیست؟
  2. انواع داده
  3. انواع داده عددی
  4. پروژه (۲) - سن کاربر
  5. میزان حافظه مصرفی
  6. رشته‌ها (String)
  7. فرمت‌بندی رشته‌ها
  8. کار با رشته‌ها
  9. پروژه (۳) - خوش‌آمدگویی به بیماران کلینیک
  10. بولین
  11. بایت و بیت؟
  12. تبدیل مبنای ۲
  13. تشخیص نوع داده
  14. اصطلاحات مربوط به متغیرها
  15. قوانین نام‌گذاری
  16. پروژه (۴) - کنترل دمای خط تولید کارخانه
  17. پروژه (۵) - کنترل دمای خط تولید در کارخانه‌ای دیگر
  18. کلمات رزرو شده
  19. محدوده متغیر
  20. None
  21. ورودی (Console)
  22. لیست‌ها
  23. لیست‌های ۲ بعدی
  24. کار با لیست‌ها
  25. پروژه (۶) - رضایت نامه اردوی تابستانه مدرسه
  26. پروژه (۷) - مدیریت دانش‌آموزان در اردوی تابستانه
  27. پروژه (۸) - مرتب سازی ماشین‌های نمایشگاه ماشین
  28. تاپل‌ها
  29. مجموعه
  30. دیکشنری
  31. بازه اعداد
  32. تبدیل نوع
  33. تبدیل نوع ضمنی
  34. تبدیل نوع صریح
  35. پروژه (۹) - بررسی شارژهای ایرانسل صحیح
  36. پروژه (۱۰) - تبریک تولد کارمندان
  37. پروژه (۱۱) - بلیط فروشی سینما
  1. عملگرهای محاسباتی
  2. پروژه (۱۲) - حسابداری فروشگاه زنجیره‌ای
  3. پروژه (۱۳) - محاسبه بهره وام سالانه بانک
  4. پروژه (۱۴) - محاسبه BMI بیماران در کلینیک سلامت
  5. عملگرهای مقایسه‌ای
  6. پروژه (۱۵) - مقایسه سن
  7. پروژه (۱۶) - مقایسه قیمت کالا‌ها
  8. پروژه (۱۷) - مقایسه طول دو رشته
  9. عملگرهای منطقی
  10. پروژه (۱۸) - مقایسه رمزعبور و تکرار آن
  11. پروژه (۱۹) - مدیریت تعمیرگاه خودرو
  12. عملگرهای انتساب
  13. پروژه (۲۰) - مدیریت مالی شخصی
  14. پروژه (۲۱) - مدیریت موجودی انبار
  15. پروژه (۲۲) - محاسبه حقوق روزمزد کارمندان
  16. عملگرهای بیتی
  17. عملگرهای عضویت
  18. پروژه (۲۳) - سطح دسترسی کاربران
  19. پروژه (۲۴) - سبد خرید کاربران آنلاین
  20. عملگرهای هویت
  21. پروژه (۲۵) - حدس خروجی کد
  22. عملگر والروس
  23. پروژه (۲۶) - محاسبه فاکتور فروش در فروشگاه
  24. تقدم عملگرها
  25. پروژه (۲۷) - محاسبه فرمول ریاضی ۱
  26. پروژه (۲۸) - محاسبه فرمول ریاضی ۲
  27. پروژه (۲۹) - محاسبه فرمول ریاضی ۳
  28. کامنت
  29. انواع کامنت
  30. دیباگ
  31. پروژه (۳۰) - محاسبه مساحت مستطیل
  32. پروژه (۳۱) - تبدیل دمای سلسیوس به فارنهایت
  33. پروژه (۳۲) - محسابه سن کاربر
  1. تصمیم گیری یعنی چی؟
  2. عبارات شرطی if-else
  3. پروژه (۳۳) - انتقال نمره دانش‌آموزان قدیم به جدید در آموزش پرورش
  4. پروژه (۳۴) - تشخیص هوا در سازمان هواشناسی
  5. پروژه (۳۵) - کنترل تردد زوج و فرد در اداره راهنمایی و رانندگی
  6. عبارات match-case
  7. تطبیق با تاپل‌ها
  8. تطبیق با لیست‌ها
  9. استفاده از گارد
  10. پرفورمنس
  11. پروژه (۳۶) - تشخیص ورودی کاربر
  12. پروژه (۳۷) - ماشین حساب
  13. پروژه (۳۸) - بررسی کدپستی در اداره پست
  1. تکرار! تکرار! تکرار!
  2. ۳ بخش اصلی هر حلقه
  3. حلقه for
  4. پروژه (۳۹) - محاسبه فاکتور مشتری
  5. پروژه (۴۰) - محاسبه توان اعداد
  6. پروژه (۴۱) - محاسبه پورسانت کارمندان بخش فروش
  7. دستور break
  8. پروژه (۴۲) - جایزه مشتری در فروشگاه
  9. پروژه (۴۳) - اولویت بندی در سیستم تیکتینگ
  10. دستور continue
  11. پروژه (۴۴) - دانش‌آموزان مردود ریاضی
  12. پروژه (۴۵) - تشخیص محصول معیوب در خط تولید کارخانه
  13. for-else
  14. پروژه (۴۶) - بررسی موجودی انبار برای یک محصول خاص
  15. حلقه while
  16. پروژه (۴۷) - کنترل دما در کارخانه شیمیایی
  17. پروژه (۴۸) - بازی حدس عدد
  18. پروژه (۴۹) - بازی حدس عدد پیشرفته
  19. while-else
  20. پروژه (۵۰) - پیدا کردن شماره حساب مشتری در بانک
  21. حلقه‌های تو در تو
  22. پروژه (۵۱) - دسته بندی لاگ‌های سیستم
  1. پروژه ToDoList (۵۲)
  2. پروژه صندوق رستوران (۵۳)
  3. پروژه تمرینی معدل دانشجویان (۵۴)
  1. تابع
  2. ساختار تابع
  3. انواع تابع
  4. روال اجرای توابع
  5. ورودی تابع
  6. خروجی تابع
  7. پروژه (۵۵) - کسر مالیات از فاکتور
  8. پروژه (۵۶) - مدیریت موجودی انبار
  9. پروژه (۵۷) - محسابه قیمت پیامک در سامانه پیامکی
  10. آرگومان یا پارامتر؟
  11. آرگومان‌های پیشفرض
  12. آرگومان‌های نام‌گذاری شده
  13. ورودی زیاد
  14. پروژه (۵۸) - محاسبه میانگین نمرات دانش‌آموزان
  15. annotations
  16. Lambda Function
  17. پروژه (۵۹) - محاسبه آلایندگی خودرو در مرکز معاینه فنی
  18. CallBack Functions
  19. پروژه (۶۰) - تبدیل مایل به کیلومتر
  20. Lambda + Callback Function
  21. پروژه (۶۱) - رتبه بندی دانش‌آموزان
  22. توابع بازگشتی
  23. سری فیبوناچی
  24. پروژه (۶۲) - جمله یازدهم در دنباله فیبوناچی
  25. پروژه (۶۳) - محسابه فاکتوریل
  26. ماژول‌ها
  27. کار با توابع
  28. دکوراتورها
  29. پروژه (۶۴) - دکوراتور در محاسبه مبهم تقسیم بر صفر
  30. پروژه (۶۵) - تست پرفورمنس
  31. جنراتورها
  32. پروژه (۶۶) - جنراتور اعداد تصادفی
  33. پروژه (۶۷) - خواندن فایل‌های بزرگ
  34. ایجاد ماژول
  35. استفاده از ماژول
  36. پکیج‌ها
  37. استفاده از پکیج
  1. اکسپشن (استثنا) چیست؟
  2. سناریوهای رایج استثناها
  3. دلایل اصلی رخ دادن استثناها
  4. مدیریت استثناها (Exception Handling)
  5. Try – Except
  6. Multiple Except Block
  7. Finally Block
  8. raise Keyword
  9. پروژه (۶۸) - مدیریت خطا (ساده)
  10. پروژه (۶۹) - مدیریت خطا (معمولی)
  11. پروژه (۷۰) - مدیریت خطا (پیچیده)
  1. Google
  2. Stack Overflow
  3. ChatGPT
  4. چطوری سوالمو از ChatGPT بپرسم؟
  1. برنامه نویسی رویه‌ای
  2. برنامه نویسی شی گرا
  3. شی‌گرایی یا رویه‌ای
  4. مزیت‌ها
  1. کلاس
  2. شیء
  3. سازنده
  4. فیلدها
  5. self
  6. تابع
  7. پروژه (۷۱) - مدیریت کتابخانه
  8. پروژه (۷۲) - سبدخرید فروشگاه آنلاین
  9. پروژه (۷۳) - عملیات واریز و برداشت در کوربنکینگ
  1. انتزاع
  2. Black Box
  3. Abstraction + Encapsulation
  4. Encapsulation
  5. پروژه (۷۴) - مدیریت دسترسی کاربر
  6. پروژه (۷۵) - مدیریت انبار پیشرفته
  7. Inheritance
  8. پروژه (۷۶) - مدیریت وسایل نقلیه در شرکت حمل و نقل
  9. پروژه (۷۷) - سطوح دسترسی کاربران عادی و ادمین
  10. انواع ارث‌بری
  11. MRO - Method Resolution Order
  12. super()
  13. پروژه (۷۸) - صندوق پس‌انداز موبایل بانک
  14. Polymorphism
  15. پروژه (۷۹) - درگاه پرداخت
  16. پروژه (۸۰) - پردازش محصولات فیزیکی و دیجیتال در فروشگاه
  17. Abstraction
  18. پروژه (۸۱) - رزرو آنلاین بلیط
  19. پروژه (۸۲) - خودروها در شرکت حمل و نقل
  1. Nested Class
  2. Enum
  3. پروژه (۸۳) - پیگیری وضعیت سفارش کاربران
  4. پروژه (۸۴) - نمایش روز جاری
  5. Meta Class
  6. پروژه (۸۵) - تمرین متا کلاس
  7. Data Class
  8. پروژه (۸۶) - مدیریت سفارشات فروشگاه
  9. Singleton
  10. پروژه (۸۷) - مدیریت سیستم‌های هشدار اضطراری ساختمان
  11. Operator Overloading
  12. پروژه (۸۸) - مدیریت و تحلیل داده های مالی
  1. سخت افزار؟ چرا؟
  2. HDD
  3. SSD
  4. RAM
  5. CPU
  6. Mother Board
  7. Interaction
  8. حافظه Heap و Stack
  9. نحوه ذخیره سازی اطلاعات
  10. Reference Type
  11. Value Type
  12. Hash Code
  13. Garbage Collector
  1. مولتی ترد یا چند نخی چیست؟
  2. Single Thread Synchronized
  3. Single Thread ASynchronized
  4. MultiThread Synchronized
  5. MultiThread ASynchronized
  6. چرا مولتی ترد؟
  7. هزینه مولتی ترد
  8. Context Switch
  9. Concurrency یا همزمانی
  10. Race Conditions شرایط مسابقه
  11. Critical Sections ناحیه بحرانی
  12. Shared Resources منابع مشترک
  13. GIL
  14. پروژه (۸۹) - چاپ اعداد با مولتی ترد
  15. پروژه (۹۰) - عملیات‌های مولتی ترد
  16. پروژه (۹۱) - درصد پیشرفت در مولتی ترد
  1. پروژه (۹۲) - لیست فایل‌ها و فولدرها
  2. پروژه (۹۳) - ارسال ایمیلهای شرکت
  3. پروژه (۹۴) - نمایش نمودار از روی نقاط
  1. کتابخانه
  2. چرا از کتابخانه‌ها استفاده کنم؟
  3. برخی از ماژول‌ها و پکیج‌های محبوب پایتون
  4. برخی از ماژول‌ها و پکیج‌های محبوب third-party
  5. Pip / Pypi
  6. پروژه (۹۵) - سیستم شمارش آرا از فایل
  7. پروژه (۹۶) - خروجی شماره موبایل‌های صحیح از فایل csv
  8. پروژه (۹۷) - تشخیص پرفروشترین و کم تقاضا ترین محصول فروشگاه
  1. RAM
  2. Disk
  3. File
  4. TXT
  5. CSV
  6. XLSX
  7. پروژه (۹۸) - مدیریت منابع انسانی شرکت
  8. پروژه (۹۹) - نمودار تغییرات هزینه‌های شرکت از اکسل
  9. پروژه (۱۰۰) - دانلودر مولتی ترد اینترنتی
  10. پروژه (۱۰۱) - سیستم مانیتورینگ منابع سیستم
  11. پروژه (۱۰۲) - سیستم کراولر وب (خزنده وب)
  1. ساخت کتابخانه
  1. پروژه (۱۰۳) - ساخت پروژه دسکتاپ مدیریت وظایف
  2. پروژه (۱۰۴) - ساخت پروژه وب جنگو مدیریت ثبت‌نام دانشجویان
  3. پروژه (۱۰۵) - ساخت پروژه هوش مصنوعی یادگیری ماشین - سیستم پیش‌بینی نمرات دانشجویان

در گام دوم چیزایی رو یاد میگیری که هیچ کجا بهت پیوسته و مرتب آموزش نمیدن. همه پراکندس! پس اینجا فنداسیونت قوی ساخته میشه!

  1. مبانی زبان پایتون
  2. توابع و برنامه‌نویسی ماژولار
  3. شی‌گرایی (OOP)
  4. مدیریت خطاها (Exception Handling)
  5. ساختارهای پیشرفته (List / Dict Comprehension)
  6. Generator و Iterator
  7. Decorator و کاربردهای عملی
  8. کار با فایل‌ها (File I/O)
  • معرفی الگوهای منظم
  • جست‌وجو، جایگزینی و استخراج اطلاعات از متن
  • نکات کاربردی در پروژه‌های واقعی
  • مفهوم API و نحوه استفاده از آن در پایتون
  • کار با APIهای خارجی و داخلی
  • ساخت API با Django (REST Framework)
  • ساخت API با Flask
  • آشنایی با مفهوم پایگاه داده و ساختار آن
  • کار با PostgreSQL
  • کار با MySQL
  • آشنایی با NoSQL و کاربردهای آن
  • کار با MongoDB به صورت کامل
  • انجام عملیات CRUD در MongoDB
  • آشنایی با Git و اهمیت آن
  • Remote و Clone
  • Init، Commit، Push، Pull
  • Status و مدیریت تغییرات
  • Branch و ایجاد شاخه‌های کاری
  • رفع Conflict و اصول کار تیمی
  • نصب و راه‌اندازی Conda
  • مدیریت محیط‌های مجزا برای پروژه‌ها
  • نصب پکیج‌ها و مدیریت نسخه‌ها
  • نصب و راه‌اندازی Jupyter
  • آشنایی با محیط و اجرای کدها
  • کاربرد Jupyter در تحلیل داده و مستندسازی پروژه
  • آشنایی با مفهوم Docker و اهمیت آن در DevOps
  • نصب و راه‌اندازی Docker
  • دستورات ضروری و کاربردی
  • ساخت Image و Container
  • Dockerize کردن پروژه جنگویی و اجرای آن در محیط ایزوله

در گام سوم یه چاشنی ریاضی داریم. نه اون ریاضیات عجیب و سخت! ریاضیات شیرین. مخصوصا با روش تدریس خاصی که ریاضی رو شیرینتر از عسل درس دادم طوریکه همهههه متوجه بشن کامل و لذت ببرن!

  1. ریاضیات پایه
  2. بخش‌های اصلی ریاضیات پایه
  3. چرا ریاضیات پایه برای هوش مصنوعی واجبه؟
  4. عدد
  5. عددها در پایتون
  6. اسکالر
  7. سطح کاراکتر (Character-level)
  8. سطح کلمه (Word-level)
  9. سطح بردارهای معنایی (Embeddings)
  10. مجموعه‌ها
  11. ویژگی‌های مجموعه
  12. روابط بین مجموعه‌ها
  13. تابع
  14. اجزای تابع
  15. انواع توابع
  16. تابع خطی (Linear Function)
  17. ویژگی‌های تابع خطی
  18. تابع غیرخطی (Nonlinear Function)
  19. توان
  20. لگاریتم (Logarithm)
  21. تابع نمایی (Exponential)
  22. منطق ریاضی و گزاره‌ها
  23. عملگرهای منطقی
  24. جدول درستی
  25. مشتق (Derivative)
  26. انتگرال (Integral)
  1. جبر خطی چی هست؟
  2. چرا جبر خطی برای هوش مصنوعی مهمه؟
  3. بردار (Vector)
  4. ضرب اسکالر بردار (Dot Product)
  5. جمع برداری
  6. فضای برداری (Vector Space)
  7. ترکیب خطی بردارها (Linear Combination)
  8. فاصله برداری (Vector Distance)
  9. ماتریس (Matrix)
  10. انواع ماتریس
  11. آدرس‌دهی عناصر ماتریس
  12. Slicing ماتریس
  13. توابع خطی
  14. توابع غیرخطی
  15. دستگاه معادلات خطی
  16. نمایش ماتریسی دستگاه معادلات
  17. روش‌های حل دستگاه معادلات
  18. عملیات روی ماتریس‌ها
  1. دترمینان
  2. ماتریس معکوس
  3. مستقل خطی
  4. ارتباط ماتریس معکوس‌پذیر و مستقل خطی
  5. ماتریس اسپارس (Sparse Matrix)
  6. تجزیه ماتریسی (Matrix Decomposition)
    1. LU Decomposition
    2. QR Decomposition
    3. SVD
    4. Eigen Decomposition
  7. Eigenvalue & Eigenvector
  8. PCA (Principal Component Analysis)
  9. تنسور (Tensor)
  10. NumPy
  11. PyTorch
  12. Broadcasting
  13. Reshape
  14. فضای داده و ماتریس داده
  1. تمرکز داده‌ها
  2. میانگین (Mean)
  3. میانه (Median)
  4. نما (Mode)
  5. واریانس (Variance)
  6. انحراف معیار (Standard Deviation)
  7. کجی (Skewness)
  8. کشیدگی (Kurtosis)
  9. کوواریانس (Covariance)
  10. همبستگی (Correlation)
  11. ماتریس کوواریانس (Covariance Matrix)
  12. ماتریس همبستگی (Correlation Matrix)
  1. احتمال پایه
  2. اجزای احتمال
  3. عدم قطعیت
  4. فضای نمونه (Sample Space)
  5. پیشامد (Event)
  6. احتمال کلاسیک و تجربی (Classical vs Empirical)
  7. قوانین پایه احتمال (جمع و ضرب)
  8. احتمال شرطی و استقلال
  9. قانون کل احتمال (Total Probability)
  10. قضیه بیز (Bayes’ Theorem)
  11. متغیر تصادفی (Random Variable)
    1. گسسته
    2. پیوسته
  12. توابع احتمال
    1. PMF
    2. PDF
    3. CDF
  13. توزیع‌های احتمالی مهم
    1. Uniform
    2. Bernoulli
    3. Binomial
    4. Poisson
    5. Normal (Gaussian)
    6. Exponential
  14. توزیع مشترک (Joint Distribution)
  15. توزیع‌های حاشیه‌ای (Marginal Distributions)
  1. آزمون فرض (Hypothesis Testing)
  2. آزمون‌های آماری
    1. آزمون Z
    2. آزمون t
    3. ANOVA
    4. آزمون χ²
  3. نمونه‌گیری (Sampling)
  4. تخمین پارامترها (Estimation of Parameters)
    1. تخمین نقطه‌ای (Point Estimate)
    2. تخمین فاصله‌ای (Interval Estimate)
  5. سطح اطمینان (Confidence Level)
  6. رگرسیون خطی ساده و چندمتغیره
  7. ارزیابی مدل رگرسیون
  8. بیش‌برازش (Overfitting)
  9. کم‌برازش (Underfitting)
  10. Regularization
  11. ارتباط رگرسیون و احتمال

یاد می‌گیری چطور داده‌هارو مثل موم توی دستت بگیری! از پاک‌سازی تا تحلیل و درک الگوها، همه‌چیز دست خودته. از اینجا به بعد تازه وارد دنیای واقعی علم داده می‌شی!

  1. داده چیست؟
  2. اهمیت داده در دنیای امروز
  3. داده در هوش مصنوعی
  4. جایگاه هوش مصنوعی نسبت به داده
  5. ساختار داده
  6. ساختارهای رایج داده
  7. ساختار داده در دنیای واقعی
  8. اهمیت ساختار داده در هوش مصنوعی
  9. دسته‌بندی ساختار داده
  10. انواع داده
  11. Dataset
  12. دیتاست‌های رایگان
  13. Data Warehouse
  14. تفاوت Database و Data Warehouse
  15. ساختار داخلی Data Warehouse
  16. مراحل ساخت Data Warehouse
  17. مزایای Data Warehouse
  18. فرآیند ETL (Extract, Transform, Load)
  19. Extract
  20. Transform
  21. Load
  22. ابزارها و الگوی ETL/ELT
  23. ارتباط ETL با یادگیری ماشین
  24. خطاهای متداول در ETL
  1. Data Cleaning
  2. مراحل اصلی پاکسازی داده
  3. Outlier و Noise
  4. انواع Outlier
  5. روش‌های شناسایی Outlier
  6. روش‌های تصویری تشخیص Outlier
  7. حذف نویز
  8. معیار نگه‌داشتن یا حذف Outlier
  9. رفع افزونگی و ناسازگاری داده‌ها
  10. منابع افزونگی و ناسازگاری
  11. تشخیص افزونگی و روش‌های رفع
  12. تشخیص ناسازگاری و تکنیک‌های رفع
  13. ادغام داده‌ها (Data Integration)
  14. روش‌های ادغام (Joins)
  15. چالش‌های ادغام داده
  16. مزیت ادغام برای یادگیری ماشین
  1. تحلیل توصیفی داده‌ها
  2. شاخص‌های مرکزی و پراکندگی
  3. تحلیل بصری داده‌ها (Visual Analysis)
  4. تحلیل همبستگی (Correlation Analysis)
  5. تحلیل داده‌های دسته‌ای (Categorical)
  1. کاهش ابعاد داده‌ها
  2. Feature Selection
  3. Feature Extraction
  4. PCA
  5. روش‌های معروف کاهش ابعاد
  6. مقیاس‌بندی داده‌ها (Normalization & Standardization)
  7. مقیاس‌بندی با حضور Outlier
  8. Batch Normalization (شبکه‌های عصبی)
  9. مفهوم fit و transform
  1. پروژه اول
    1. دیتاست
    2. Extract
    3. Transform
    4. Load
    5. شناسایی داده‌های ناقص
    6. داده‌های پرت
    7. نویز
    8. افزونگی و ناسازگاری
    9. ادغام داده
    10. تحلیل توصیفی
    11. نمودارها: histogram, box, heatmap
    12. تحلیل همبستگی
    13. مهندسی ویژگی
    14. کاهش ابعاد با PCA
    15. مقیاس‌بندی (استانداردسازی، نرمال‌سازی)
  2. پروژه دوم
    1. اکسترکت داده از ۳ منبع
    2. فایل CSV
    3. API (JSON)
    4. دیتابیس MongoDB
    5. فرآیند Transform
    6. بارگذاری در دیتابیس SQLiteDB
  1. فرآیند داده‌کاوی
  2. چرخهٔ استاندارد CRISP-DM
  3. طبقه‌بندی (Classification)
    1. Logistic Regression
    2. Decision Tree
    3. Random Forest
    4. KNN
    5. Naive Bayes
    6. Support Vector Machine
    7. Artificial Neural Network
  4. خوشه‌بندی (Clustering)
    1. K-Means
    2. Hierarchical Clustering
    3. DBSCAN
    4. Gaussian Mixture Model (GMM)
  1. ارزیابی مدل‌های طبقه‌بندی
    1. Accuracy
    2. Precision
    3. Recall
    4. F1-Score
    5. Confusion Matrix
    6. ROC Curve و AUC
  2. ارزیابی خوشه‌بندی
    1. Silhouette Score
    2. Davies–Bouldin Index
    3. Calinski–Harabasz Index
  3. تفسیر مدل‌ها (Model Explainability)
  4. مبانی هوش تجاری (Business Intelligence)
  5. رابطهٔ BI با Data Warehouse و ETL
  6. اجزای اصلی BI
  7. نقش BI در هوش مصنوعی
  8. تفاوت BI با Data Science

اینجا تازه مغز سیستم رو می‌سازیم! یاد می‌گیری چطور کامپیوتر رو آموزش بدی تا خودش فکر کنه، تصمیم بگیره و الگوها رو کشف کنه. از اینجا به بعد دیگه فقط برنامه‌نویس نیستی، مربی ماشین‌ها می‌شی!

  1. تعریف و جایگاه ML در هوش مصنوعی
  2. تفاوت با AI، داده‌کاوی، Deep Learning و Data Science
  3. انواع یادگیری: Supervised, Unsupervised, Semi-Supervised, Reinforcement
  4. کاربردهای صنعتی و واقعی ML
  5. مراحل انجام یک پروژه ML (از داده تا استقرار)
  6. ابزارها و محیط‌ها (Jupyter, Google Colab, Scikit-Learn و ...)
  1. منحنی یادگیری (Learning Curve)
  2. تابع هدف و تابع هزینه
  3. خطاها: Bias, Variance, Underfitting, Overfitting
  4. تکنیک‌های Regularization: L1, L2, Elastic Net
  5. ارزیابی مدل:
    1. Train/Test split, Cross Validation (K-Fold)
    2. معیارها: MSE, MAE, R², Accuracy, Precision, Recall, F1, ROC, AUC
    3. Confusion Matrix
  6. پارامتر vs. ابرپارامتر
  7. تنظیم ابرپارامترها (Grid Search, Random Search)
  8. مفاهیم epoch, batch size, iteration
  1. 📌 رگرسیون (Regression)
    1. رگرسیون خطی ساده و چندمتغیره
    2. رگرسیون غیرخطی، چندجمله‌ای (Polynomial)
    3. Gradient Descent و حل تحلیلی (Normal Equation)
    4. Regularization در رگرسیون (Ridge, Lasso, ElasticNet)
    5. ارزیابی مدل‌های رگرسیون (MSE, R², ...)
  2. 📌 طبقه‌بندی (Classification)
    1. طبقه‌بندی دودویی، چندرده‌ای، چندبرچسبی
    2. الگوریتم‌ها:
      1. Logistic Regression
      2. Decision Tree
      3. Random Forest
      4. K-Nearest Neighbors (KNN)
      5. Naive Bayes
      6. Support Vector Machine (SVM)
      7. Gradient Boosting, AdaBoost, XGBoost
    3. یادگیری جمعی (Ensemble): Bagging vs Boosting
    4. داده نامتوازن: Undersampling, Oversampling, SMOTE
  1. 📌 خوشه‌بندی (Clustering)
    1. الگوریتم‌ها:
      1. K-Means, KMeans++
      2. Hierarchical Clustering
      3. DBSCAN
      4. Mean Shift
      5. Gaussian Mixture Model (GMM)
      6. Spectral Clustering
      7. Fuzzy C-Means
    2. روش تعیین تعداد خوشه (Elbow Method, Silhouette Score)
  2. 📌 کاهش ابعاد (Dimensionality Reduction)
    1. Feature Selection vs Feature Extraction
    2. روش‌ها:
      1. PCA (Principal Component Analysis)
      2. LDA (Linear Discriminant Analysis)
      3. t-SNE
  1. یادگیری نیمه‌نظارتی (Semi-Supervised)
  2. یادگیری فعال (Active Learning)
  3. یادگیری تقویتی پایه (Reinforcement Learning Basic)
    1. Agent, Environment, State, Action, Reward
    2. Q-Learning, SARSA
    3. MDP، Exploration vs Exploitation
  1. سیستم‌های توصیه‌گر (Recommender Systems)
    1. Collaborative Filtering
    2. Content-Based
  2. یادگیری ماشین برای متن و NLP (روش‌های سنتی)
    1. Bag of Words
    2. TF-IDF
    3. دسته‌بندی متون
  3. تحلیل سری‌های زمانی (Time Series)
    1. ARIMA
    2. Feature-based approaches
  4. یادگیری بیزی (Bayesian Learning)
    1. Bayesian Regression
    2. احتمالات در مدل
  5. نگهداری مدل و Data/Model Drift
    1. ذخیره و به‌روزرسانی مدل‌ها
    2. پایش عملکرد پس از استقرار
  1. پروژه‌های طبقه‌بندی، رگرسیون، خوشه‌بندی، کاهش بعد
  2. کار با Scikit-learn و Pandas
  3. مشارکت در مسابقات Kaggle و پروژه‌های واقعی

آموزش یادگیری ماشین

یادگیری ماشین (ML) مجموعه‌ای از روش‌ها و الگوریتم‌هاست که به کامپیوترها اجازه می‌دهد از داده‌ها الگو بیاموزند، پیش‌بینی کنند و تصمیم بگیرند. به جای اینکه همه مراحل را برنامه‌نویسی کنیم، با الگوریتم‌های ML به سیستم‌ها یاد می‌دهیم که از تجربه و داده یاد بگیرند.
کاربردهای یادگیری ماشین شامل موارد زیر است:

  • تشخیص تصویر، صدا و چهره
  • پیش‌بینی روندهای بازار و فروش
  • فیلتر کردن اسپم و تشخیص تقلب
  • پیشنهاد هوشمند محتوا (Recommendation Systems)
  • تحلیل رفتار کاربران و شخصی‌سازی خدمات
  • مدل‌سازی پیچیده در علوم و صنعت

پایه‌ی فهم الگوریتم‌های یادگیری ماشین، درک مفاهیم ریاضی و آماری است. در این دوره، بخش ویژه‌ای برای یادگیری کاربردی این مفاهیم در نظر گرفته شده تا بتوانید منطق پشت مدل‌ها را واقعاً بفهمید:

  • احتمال و آمار: توزیع‌ها، احتمال شرطی، برآورد پارامترها، آزمون فرض و ارزیابی مدل‌ها
  • جبر خطی: بردارها، ماتریس‌ها، ضرب ماتریسی، معادلات خطی، تجزیه‌ها (SVD, Eigen)
  • ریاضیات محاسباتی: مشتق، گرادیان، حداقل‌سازی تابع هزینه (Cost Function)، گرادیان دیسنت
  • مفاهیم تحلیلی: بایاس و واریانس، Overfitting و Underfitting، ارزیابی مدل‌ها

هدف این بخش این است که بدون غرق شدن در فرمول‌های پیچیده، منطق درونی الگوریتم‌ها را درک کنید و بتوانید از آن‌ها به درستی استفاده کنید.

این دوره برای افرادی مناسب است که می‌خواهند وارد دنیای حرفه‌ای یادگیری ماشین شوند، از جمله:
  • علاقه‌مندان به هوش مصنوعی و تحلیل داده
  • دانشجویان رشته‌های فنی و علوم پایه
  • برنامه‌نویسانی که می‌خواهند مهارت‌های تحلیلی و مدل‌سازی خود را توسعه دهند
  • متخصصان حوزه‌هایی مثل بازاریابی، مالی یا پزشکی که می‌خواهند با استفاده از ML تصمیم‌های دقیق‌تر بگیرند
ساختار دوره به صورت گام‌به‌گام طراحی شده است تا یادگیری مفاهیم پیچیده، ساده و قابل فهم شود:
  1. آشنایی با مفاهیم یادگیری ماشین و کاربردهای آن
  2. مبانی ریاضیات، آمار و احتمال مورد نیاز
  3. پیش‌پردازش داده‌ها و آماده‌سازی آن‌ها برای مدل‌سازی
  4. الگوریتم‌های یادگیری ماشین نظارت‌شده (Supervised Learning)
    • رگرسیون خطی و لجستیک
    • درخت تصمیم (Decision Tree)
    • KNN، SVM و سایر مدل‌های پایه
  5. الگوریتم‌های یادگیری ماشین بدون نظارت (Unsupervised Learning)
    • خوشه‌بندی (Clustering) مانند K-Means
    • کاهش ابعاد (PCA) و تحلیل ساختار داده
  6. بهینه‌سازی، تنظیم هایپرپارامترها و ارزیابی مدل‌ها
  7. مصورسازی عملکرد مدل و تفسیر نتایج
  8. اجرای پروژه‌های عملی یادگیری ماشین در دنیای واقعی

من توی آموزش دوره یادگیری ماشین ضمانت می‌کنم که:

  • مفاهیم یادگیری ماشین رو قشنگ بهت یاد بدم
  • اصول و مقدمات ریاضیات و آمار رو آموزش بدم
  • به صورت کاملا عملی برات کد بزنم
  • تجربه خودم در پیاده سازی پروژه های بزرگ مثل پروژه های بانکی کشور رو تماما بهت منتقل کنم
  • یک پورتال اختصاصی روی سایت بهت بدم
  • پرسش های ذهنت رو پاسخگو باشم
  • در صورت نارضایتیت ، پول پرداختی رو با احترام برگردونم
  • یک متخصص Machine Learning از تو بسازم!

بعد از ثبت نام یک ایمیل برای شما ارسال می‌شود که آدرس پورتال آموزش یادگیری ماشین مخصوص اعضای دوره است. تمام ویدیوهای آموزشی یادگیری ماشین، تمرین‌ها، تکالیف، نمونه کدها در این پورتال قرار می‌گیرند و برای همیشه در دسترس شما می باشد. می‌توانید آن‌ها را دانلود کنید و هیچ گونه محدودیتی وجود ندارد.

در صورتی که مطالب خارج از سرفصل ارائه شد و یا محتوایات دوره مغاییر با سرفصل بود، کمترین کار ممکن بازگشت بدون قید و شرط مبلغ سرمایه گذاری شده توسط شما است.

پشتیبانی VIP هولوسن دقیقا چه مزیتی دارد؟

با تهیه این دوره، در جمع اعضای VIP هولوسن قرار می‌گیرید و پشتیبانی اختصاصی دریافت می‌کنید.

پشتیبانی هولوسن، به‌صورت مداوم و از طریق سامانه اختصاصی پشتیبانی روی سایت، در دسترس شماست.
پرسش‌های شما توسط برنامه‌نویسانی که متخصص هستند، در کمتر از ۶ دقیقه بررسی و پاسخ داده می‌شود.
برخلاف روش‌های متداول در سایر سایت‌ها که از طریق گروه‌های تلگرامی ، واتساپ یا سایر پیام‌رسان‌ها در میان انبوه پیام‌ها و ریپلای‌ها با تاخیر فراوان پاسخ خود دریافت می‌کنید، در سامانه اختصاصی پشتیبانی هولوسن تمام مکاتبات شما در محیطی منظم، ماندگار و قابل پیگیری ثبت می‌شود.
در هولوسن، هدف از پشتیبانی صرفا پاسخگویی نیست؛ بلکه همراهی تا زمان دستیابی به نتیجه واقعی است.

پشتیبانی هولوسن ۱
پشتیبانی هولوسن ۲
پشتیبانان هولوسن، همگی افراد متخصص در حوزه برنامه‌نویسی هستند و سال‌ها تجربه در شرکت‌ها و پیاده‌سازی پروژه‌های بزرگ و کوچک مختلف را دارند.
پشتیبانی فنی هولوسن ۱
پشتیبانی فنی هولوسن ۲
پشتیبانی فنی هولوسن ۳
با پشتیبانی هولوسن در سریع‌ترین حالت ممکن، کامل‌ترین پاسخ را دریافت خواهید کرد.
پشتیبانی سریع هولوسن
پشتیبانی کامل هولوسن
همین حالا میتوانید روی دکمه بنفش رنگ گوشه سمت راست پایین صفحه کلیک کنید و با پشتیبانان هولوسن در ارتباط باشید.
درباره تیم پشتیبانی هولوسن، چه میگویند؟
فیدبک پشتیبانی هولوسن ۱
فیدبک پشتیبانی هولوسن ۲
فیدبک پشتیبانی هولوسن ۳

پشتیبانی ۱۸۰ هزار نفری، بیشتر از ۲برابر ورزشگاه آزادی

ورزشگاه آزادی حدود ۸۰ هزار نفر ظرفیت دارد، بزرگترین ورزشگاه ایران. ۲ ورزشگاه آزادی را در کنار هم مجموعا ۱۶۰ هزار نفر ظرفیت دارد.
تا امروز (زمان نگارش این گزارش یعنی پایان شهریور ۱۴۰۴)، تیم پشتیبانی هولوسن بیش از ۱۸۰ هزار پیام پشتیبانی را طی ۴ سال اخیر دریافت و پاسخ داده است یعنی بیش از دو برابر ظرفیت ورزشگاه آزادی.

پشتیبانی ۱۸۰ هزار نفری، بیشتر از ۲برابر ورزشگاه آزادی


موقعیتی را تصور کنید که تیم پشتیبانی هولوسن در مرکز ۲ ورزشگاه قرار دارد و ۱۸۰ هزار نفر پرسش خود را مطرح می‌کنند. در میان این جمع عظیم، هیچ‌کس بی‌پاسخ نمی‌ماند. هر درخواست به موقع، دقیق و محترمانه با کیفیت زیر انجام می‌شود.
عملکرد سال ۱۴۰۴ : به طور متوسط در کمتر از ۴ دقیقه (دقیقا ۳ دقیقه و ۴۲ ثانیه) پاسخ ۳۰ هزار نفر را فراهم کرده‌ایم.
عملکرد سال ۱۴۰۳ : به طور متوسط در کمتر از ۱۷ دقیقه (دقیقا ۱۶ دقیقه و ۳۶ ثانیه) پاسخ ۵۰ هزار نفر را فراهم کرده‌ایم.
عملکرد سال ۱۴۰۲ : به طور متوسط در کمتر از ۳۸ دقیقه (دقیقا ۳۷ دقیقه و ۵۰ ثانیه) پاسخ ۴۸ هزار نفر را فراهم کرده‌ایم.

هدف ما پاسخگویی زیر ۱ دقیقه است.
هنوز به استانداردی که خودمان از تیم پشتیبانی هولوسن انتظار داریم نرسیده‌ایم و دقیقاً همین است که ما را هر روز در جهت بهتر شدن، حرکت می‌دهد.

پلنر مطالعاتی اختصاصی، مسیر یادگیری بدون سردرگمی

در هولوسن، هر دوره همراه با پلنر مطالعاتی اختصاصی ارائه می‌شود؛ برنامه‌ای دقیق، قدم‌به‌قدم و کاملاً منطبق با محتوای همان دوره.
خیلی‌ها یادگیری را با انگیزه شروع می‌کنند اما وسط راه سردرگم می‌شوند. نه می‌دانند از کجا شروع کنند، نه چه زمانی تمرین کنند، نه چطور مرور کنند. ما دقیقاً برای همین، پلنر اختصاصی هر دوره را طراحی کردیم.

پلنر مطالعاتی اختصاصی، مسیر یادگیری بدون سردرگمی

برای هر دوره، یک نقشه راه دقیق داری تا بدانی چه زمانی، چه چیزی و چطور پیش بروی. یادگیری مؤثر فقط با دیدن ویدیوها اتفاق نمی‌افتد؛ نظم و مسیر مشخص، کلید رشد واقعی است.
در این پلنر، روزبه‌روز مسیرت مشخص است:
چه ببینی، چه تمرینی انجام دهی، کِی مرور کنی و چطور نتیجه بگیری.
مثل داشتن یک مربی کنار دست است که همیشه می‌گوید قدم بعدی چیست.
با این برنامه، یادگیری هدفمند و منظم پیش می‌رود.

دسترسی کامل به سورس کد، فایل‌ها، اسلاید و موارد آموزشی

در هر جلسه از دوره، تمام کدها، سورس‌فایل‌ها، اسلایدها و تمرین‌ها به‌صورت منظم و تفکیک‌شده در اختیار دانشجویان قرار می‌گیرد.

دسترسی کامل به سورس کد، فایل‌ها، اسلاید و موارد آموزشی

هر بخش دقیقاً همان چیزی است که مدرس در آموزش استفاده می‌کند، بنابراین امکان بررسی، اجرا و تغییر کد برای دانشجویان فراهم است.
در هولوسن، همه‌چیز شفاف و در دسترس است؛ هر آنچه مدرس در آموزش‌ها استفاده می‌کند، در اختیار دانشجویان نیز قرار می‌گیرد. دقیقا همان فایل!

حتی اگر ۳ سال ِ بعد برگردید، احترام و کیفیت خدمات ما هنوز همان هولوسنِ روز اول هست.

حتی اگر ۳ سال بعد دوباره بازگردید، ما شما را مثل روز اول می‌شناسیم و با همان احترام و دقت در کنار شما خواهیم بود. کیفیت خود را بیشتر می‌کنیم.
ما برخلاف بسیاری از مؤسسات آموزشی که پس از خرید کاربر را رها می‌کنند یا دسترسی به به‌روزرسانی‌ها را پولی می‌فروشند، تمام به‌روزرسانی‌های دوره‌ها را مادام‌العمر و کاملاً رایگان ارائه می‌کنیم.

حتی اگر ۳ سال ِ بعد برگردید، احترام و کیفیت خدمات ما هنوز همان هولوسنِ روز اول هست.

در واقع، ما فروش نمی‌کنیم؛ ما رابطه‌ای بلندمدت بر پایه‌ی احترام و اعتماد می‌سازیم.
در هولوسن، هر دانشجو جایگاه ویژه‌ای دارد؛ مثل کسی که بخشی از مسیر رشد ماست. از روز اول آموزش تا سال‌ها بعد، پشتیبانی، به‌روزرسانی‌ها و ارتباط انسانی ما ادامه دارد.هر تغییری در تکنولوژی، ابزارها یا استانداردهای آموزش، بلافاصله در محتوای دوره اعمال می‌شود و شما بدون هیچ هزینه‌ای بلکه به صورت کاملا رایگان به جدیدترین نسخه‌ها دسترسی دارید.

یاد می‌دهیم چطور فکر کنید و چطور حل کنید

ما فقط نمی‌گوییم چه کاری انجام دهید، بلکه نشان می‌دهیم چطور فکر کنید و چطور حل کنید.
در آموزش‌های هولوسن، تمرکز صرفاً بر اجرای تمرین‌ها یا دیدن ویدیوها نیست؛ بلکه بر درک عمیق مسیر یادگیری و منطق پشت هر گام است.

یاد می‌دهیم چطور فکر کنید و چطور حل کنید

هر مبحث با مثال‌های واقعی، تحلیل مرحله‌به‌مرحله و پروژه‌های کوچک آموزش داده می‌شود تا دانشجو بداند چرا آن راه‌حل درست است، نه اینکه صرفاً آن را تقلید کند.
در هر بخش از آموزش، به‌جای تمرین‌های ازپیش‌تعریف‌شده، با یک پروژه‌ی واقعی درگیر می‌شوید؛ از تحلیل و طراحی تا کدنویسی، تست و ارائه.هر پروژه بر اساس مهارت‌های مورد نیاز بازار کار انتخاب شده و طوری طراحی می‌شود که شما علاوه بر یادگیری مباحث تئوری، منطق عملی پشت هر گام را هم درک کنید.
در مسیر انجام پروژه، مدرس مرحله‌به‌مرحله روش فکر کردن، انتخاب ابزار، رفع خطا و بهینه‌سازی را آموزش می‌دهد تا مهارت واقعی حل مسئله در شما شکل بگیرد.
در پایان، مجموعه‌ی پروژه‌های شما به یک رزومه‌ی قابل‌ارائه تبدیل می‌شود که می‌تواند نقطه‌ی شروع همکاری‌های شغلی، فریلنسری یا حتی مهاجرت تحصیلی باشد.هدف ما این است که بعد از پایان دوره، دیگر به هیچ مدرس یا منبع دیگری وابسته نباشید و بتوانید مسیر رشد خود را مستقل ادامه دهید.

شما فقط دانشجو نیستید، شریک رشد هم هستیم

ما در طول دوره، بازخورد و نیازهای واقعی دانشجویان را دریافت و بر اساس آن، محتوای آموزشی را به‌روز می‌کنیم.
اگر در زمان یادگیری احساس کنید مبحثی نیاز به توضیح یا تمرین بیشتری دارد، کافی است از طریق پنل پشتیبانی یا فرم بازخورد، موضوع را ثبت کنید.

شما فقط دانشجو نیستید، شریک رشد هم هستیم


تیم محتوای ما درخواست را بررسی کرده و در صورت نیاز، جلسه‌ی تکمیلی یا آموزش جدید به دوره اضافه می‌کند.
همچنین، نمونه‌کارهای شما پس از بررسی، در سایت رسمی هولوسن منتشر می‌شود تا هم رزومه‌ای واقعی برای شما باشد و هم الگویی برای دیگران.

چه تضمینی وجود دارد که به بازار کار برسم؟

تیم هولوسن به‌صورت مداوم آگهی‌های شغلی، پروژه‌های فریلنسری و نیازهای فنی شرکت‌های فعال در ایران و خارج از کشور را رصد می‌کند. بر اساس این داده‌ها، محتوای آموزشی دوره‌ها به‌روزرسانی می‌شود تا دقیقاً با نیازهای روز بازار هم‌سو باشد. هر چیزی که در آگهی‌های شغلی می‌بینید، قبل از شما در تیم آموزشی ما تحلیل و به محتوای دوره اضافه می‌شود.

چه تضمینی وجود دارد که به بازار کار برسم؟

مدرس هولوسن از دل بازار کار آمده، نه از کتاب‌ها؛ آنچه یاد می‌دهند همان چیزی است که در شرکت‌ها، پروژه‌های فریلنسری و مصاحبه‌های واقعی نیاز دارید.چون دوره‌ها مادام‌العمر به‌روزرسانی می‌شوند، مهارت‌های شما همیشه مطابق جدیدترین نیازهای بازار باقی می‌مانند.
دانشجویان هولوسن به درآمد رسیده‌اند، یا در شرکت‌های معتبر استخدام شده‌اند یا پروژه‌های خودشان را پیاده‌سازی کردند. پس شما هم می‌توانید.

چطور از اصالت فیدبک‌‌‌ها مطمئنم شوم؟

اعتماد، نتیجه‌ی شفافیت است.
تمام بازخوردهای نمایش‌داده‌شده، واقعی و قابل‌راستی‌آزمایی هستند.
تمام نظراتی که در صفحه دوره‌ها یا صفحه رضایت مشتریان می‌بینید، از کاربران واقعی ثبت‌شده در سایت ما دریافت شده‌اند؛ افرادی که دوره را خریداری کرده و واقعاً آن را گذرانده‌اند. برای آرامش خاطر شما، بخش بزرگی از این بازخوردها به‌صورت ویدیویی یا همراه با نام کاربری واقعی نمایش داده می‌شوند.
در مواردی که فیدبک‌ها از طریق اینستاگرام مدرس منتشر شده‌اند، شناسه (ID) شخص نظر‌دهنده نیز به‌صورت عمومی درج شده است تا در صورت تمایل، بتوانید مستقیماً با او ارتباط برقرار کنید و از صحت تجربه مطمئن شود.

چطور از اصالت فیدبک‌‌‌ها مطمئنم شوم؟

تجربه واقعی دانشجویان هولوسن


سوالات متداول

تنها پیشنیاز شما برای شروع دوره، "علاقه" هست، .دوره به صورت صفر تا صدی است و نیاز به پیشنیاز ندارد

بلافاصله بعد از ثبت نام می‌توانید دوره را دانلود کنید.

بله فقط یکبار نیاز هست که دوره را دانلود کنید بعد از یکبار دانلود هزاران بار میتوانید مشاهده کنید.
با تسلط به دوره، آنچنان قدرتی خواهید داشت که هر گونه موقعیت شغلی‌ای را که اراده کنید برای خودتان باشد. شما هستید که انتخاب میکنید در چه شرکتی کار کنید.
بله. وقتی دوره را تا انتها ببینید، تمرین‌های داده‌شده را انجام دهید و در ارزیابی پایانی مورد تأیید قرار بگیرید؛ گواهی پایان دوره برای شما صادر می‌شود.

ویژگی دوره‌های آموزشی

دوره‌های آموزشی هولوسن چه ویژگی‌هایی دارند👇👇👇
ضمانت بازگشت وجه ضمانت بازگشت وجه
در صورتی که مطالب خارج از سرفصل ارائه شد و احساس مفید نبودن مطالب برای شما پدید آمد، کمترین کار ممکن بازگشت بدون قید و شرط مبلغ سرمایه گذاری شده توسط شما است. برای وقت شما ارزش قائل هستیم به همین خاطر دوره‌های آموزشی جامع مخصوص بازار کار به صورت تخصصی و با دقت فراوان برای شما تولید کرده‌ایم.
آپدیت مادام‌العمر رایگان آپدیت مادام‌العمر
محتوای دوره آموزشی که تهیه می‌کنید برای همیشه در اختیار شما باقی خواهد ماند و هیچ محدودیتی از نظر زمان دسترسی وجود ندارد. علاوه بر این، هر زمان که تغییرات یا به‌روزرسانی‌های جدیدی روی مطالب ایجاد شود، شما بدون پرداخت هیچ هزینه‌ای به‌طور رایگان به آن‌ها دسترسی خواهید داشت و از مزایا استفاده می‌کنید.
پشتیبانی فوق VIP پشتیبانی VIP
پشتیبانی ویژه و اختصاصی دوره‌ها در سطح vip برای شما فراهم شده است تا هیچ سوالی بی‌پاسخ نماند. این پشتیبانی شامل دسترسی به سیستم پشتیبانی آنلاین، امکان ارتباط مستقیم با مدرس از طریق دایرکت، ایمیل مخصوص دوره، اتصال به سیستم از راه AnyDesk و همچنین بخش پرسش و پاسخ اختصاصی است.
آموزش پروژه محور پروژه‌محور
تمامی دوره‌های آموزشی ما به‌صورت پروژه‌محور طراحی شده‌اند تا شما علاوه بر یادگیری مفاهیم تئوری، تجربه عملی واقعی نیز به دست آورید. خروجی هر دوره یک پروژه کاربردی است که می‌تواند به عنوان نمونه کار ارزشمند در رزومه شما قرار گیرد و مسیر استخدام یا همکاری حرفه‌ای را هموار سازد.

ضمانت بازگشت وجه

برای وقت شما ارزش قائل هستیم به همین خاطر دوره جامع آموزش یادگیری ماشین به صورت تخصصی و با دقت فراوان تولید شده است. هدف از ارائه این آموزش تخصصی یادگیری ماشین، یادگیری مهارت دانش‌پذیران به صورت پروژه محور است. در دوره آموزش یادگیری ماشین از صفر‎ شما می‌توانید قدم به قدم برای یادگیری یادگیری ماشین استارت پر قدرت بزنید.

در صورتی که مطالب خارج از سرفصل ارائه شد و یا محتوایات دوره مغاییر با سرفصل بود، کمترین کار ممکن بازگشت بدون قید و شرط مبلغ سرمایه گذاری شده توسط شما است.

هدف ما یادگیری با کیفیت است. اینقدر در دوره اموزش یادگیری ماشین مطالب کاربردی و مفید ارائه خواهد شد که قطعا در آخر هرگز تصور نمی‌کنید که تا این حد علاقه‌مند و مشتاق، یادگیری ماشین را فراگرفته‌اید. یادگیری ماشین یک دوره فوق حرفه ای برای افرادی است که دوست دارند حرفه ای و متخصص شوند.

گارانتی بازگشت وجه


مدرک و گواهینامه پایان دوره

مدرک پایان دوره

پیشنهاد می‌شود دیدگاه خود را نسبت به داشتن “مدرک” برای مهارت‌های خود تغییر دهید. یادگیری و تسلط به موضوع، مهمترین نکته در گذراندن یک دوره است. هدف نهایی، کسب تخصص شما و کسب درآمد توسط دانش‌پذیران از بازار کار است که به آن خواهید رسید.
وقتی دوره را تا انتها ببینید، تمرین‌های داده‌شده را انجام دهید و در آزمون پایانی شرکت کنید گواهی رسمی پایان دوره از هولوسن برای شما صادر میشود.
این گواهینامه تایید می‌کند که شما مهارت‌های لازم در مسیر را به‌صورت عملی کسب کرده‌اید. مدرک به‌صورت دیجیتال صادر میشود و امکان ثبت مستقیم در پروفایل لینکدین یا رزومه کاری تحت عنوان Massive Open Online Courses) MOOC Certificates) را دارد.

روش پرداخت

خرید اقساطی هولوسن
پرداخت اقساطی
  • پرداخت از طریق درگاه بانکی یا کارت‌به‌کارت
  • دسترسی به کل محتوای دوره بلافاصله بعداز پرداخت قسط اول
  • ✅ بدون نیاز به چک، سفته، ضامن و بدون سود
  • ✅ بدون سود
خرید نقدی هولوسن
پرداخت نقدی
  • پرداخت از طریق درگاه بانکی یا کارت‌به‌کارت
  • دسترسی به کل محتوای دوره بلافاصله بعد از پرداخت

کاملترین و سریعترین تیم پشتیبانی آموزشی ایران

۵ روش حمایتی متنوع

پشتیبانی آنلاین پشتیبانی آنلاین سایت: پاسخ فوری در کمتر از ۶ دقیقه

پشتیبانی اینستاگرام اینستاگرام: پرسش شخصی از مدرس دوره

ایمیل دوره ایمیل مخصوص دوره: برای پرسش‌های پروژه‌ای

فرم پرسش مخصوص دوره فرم مخصوص پرسش مستقیم از مدرس: موجود در صفحه پورتال اختصاصی در وب‌سایت

اتصال انی دسک اتصال از راه دور: در مواقع خاص با AnyDesk، تیم پشتیبانی از راه دور وارد سیستم شما می‌شود و مشکل را به‌صورت زنده برطرف می‌کند


نتایج واقعی یادگیری در هولوسن

محمدرضا شادی
زهرا میرزاعلیان
محسن قربانی‌پور
فریناز نادری
سعید بقرایی
داود آقارضایی
حسین معصومی
علی سلیمی
شهروز محمدی
امیرعباس مومنی
نازنین کریم‌پور
امیررضا یوسفی
صلاح الدین محبتی
علی امیری
اگه حس میکنی سن زیادی داری گوش کن

کسب مدال کشوری و مسابقات جهانی دانشجویان هولوسن

مسابقات جھانی ٢٠٢۴ لیون فرانسه:
مقام ۴ المپیاد کشوری امیر عباس مومنی
مقام المپیاد کشوری - رشته نرم افزار موبایل
مدرک مقام ۴ المپیاد کشوری
مقام ۴ المپیاد کشوری - امیرعباس مومنی
مقام ۴ المپیاد کشوری - امیر عباس مؤمنی
انتشار اپلیکیشن با ۵۰+ هزار دانلود در کافه بازار
اپلیکیشن درصدگیر آزمون
اپلیکیشن آزمون وکالت
گرفتن پروژه در مسیر یادگیری
پروژه دانشجویان
راه‌اندازی شرکت برنامه نویسی
شرکت برنامه‌نویسی دارچین
استخدام در شرکت برنامه نویسی
استخدام در شرکت برنامه نویسی

پشتیبانی VIP هولوسن دقیقا چه مزیتی دارد؟

با تهیه این دوره، در جمع اعضای VIP هولوسن قرار می‌گیرید و پشتیبانی اختصاصی دریافت می‌کنید.

پشتیبانی هولوسن، به‌صورت مداوم و از طریق سامانه اختصاصی پشتیبانی روی سایت، در دسترس شماست.
پرسش‌های شما توسط برنامه‌نویسانی که متخصص هستند، در کمتر از ۶ دقیقه بررسی و پاسخ داده می‌شود.
برخلاف روش‌های متداول در سایر سایت‌ها که از طریق گروه‌های تلگرامی ، واتساپ یا سایر پیام‌رسان‌ها در میان انبوه پیام‌ها و ریپلای‌ها با تاخیر فراوان پاسخ خود دریافت می‌کنید، در سامانه اختصاصی پشتیبانی هولوسن تمام مکاتبات شما در محیطی منظم، ماندگار و قابل پیگیری ثبت می‌شود.
در هولوسن، هدف از پشتیبانی صرفا پاسخگویی نیست؛ بلکه همراهی تا زمان دستیابی به نتیجه واقعی است.

پشتیبانی هولوسن ۱
پشتیبانی هولوسن ۲
پشتیبانان هولوسن، همگی افراد متخصص در حوزه برنامه‌نویسی هستند و سال‌ها تجربه در شرکت‌ها و پیاده‌سازی پروژه‌های بزرگ و کوچک مختلف را دارند.
پشتیبانی فنی هولوسن ۱
پشتیبانی فنی هولوسن ۲
پشتیبانی فنی هولوسن ۳
با پشتیبانی هولوسن در سریع‌ترین حالت ممکن، کامل‌ترین پاسخ را دریافت خواهید کرد.
پشتیبانی سریع هولوسن
پشتیبانی کامل هولوسن
همین حالا میتوانید روی دکمه بنفش رنگ گوشه سمت راست پایین صفحه کلیک کنید و با پشتیبانان هولوسن در ارتباط باشید.
درباره تیم پشتیبانی هولوسن، چه میگویند؟
فیدبک پشتیبانی هولوسن ۱
فیدبک پشتیبانی هولوسن ۲
فیدبک پشتیبانی هولوسن ۳

مدرس دوره چه کسی است؟

حسین بدرنژاد
حسین بدرنژاد

(هم‌بنیانگذار هولوسن)

  • نویسنده و مؤلف کتاب‌های کاتلین ازصفرمطلق و جاوا ازصفرمطلق
  • برنامه‌نویس ارشد جاوا (ازکی‌وام)
  • برنامه‌نویس جاوا (داتین)
  • راهبر فنی (خیریه کودکان فرشته‌اند)
  • راهبر فنی (روکا)
  • برنامه‌نویس ارشد دات نت (موسسه اعتباری نور)
  • برنامه‌نویس دات نت (گسترش انفورماتیک ایران)
  • تجربه پیاده‌سازی وب و موبایل اپلیکیشن‌های مورد استفاده در حوزه بانکی کشور توسط بانک‌های مطرحی مثل بانک سپه، صادرات، تجارت، پاسارگاد، رسالت، موسسه اعتباری نور و ...
  • خانه هوشمند با زبان پایتون، از طراحی، پیاده‌سازی تا اجرا
  • برنامه‌نویسی با زبان پایتون برای دستگاه‌های پرداخت اتوماتیک
  • تجربه بیش از ۱۰ سال برنامه‌نویسی در شرکت‌‌های بزرگ ایرانی و خارجی بصورت تمام‌وقت، پارت‌تایم، پروژه‌ای و ریموت
  • تجربه بیش از ۶ سال تدریس تخصصی با بیش از ۱۰۰۰۰ دانشجو
  • تدریس بیش از ۱۰۰۰ ساعت آموزشی
مشاهده رزومه

وقتی مدرس شما کسی باشه که سال‌ها توی دنیای واقعی برنامه‌نویسی کار کرده، از پروژه‌های کوچیک استارتاپی گرفته تا پروژه‌های بزرگ توی شرکت‌ها و سازمان‌های داخلی و حتی بین‌المللی، فرقش رو از همون جلسه اول حس می‌کنید. این فقط یه مدرس کتابی نیست، کسیه که طعم مشکلات واقعی و راه‌حل‌های عملی رو چشیده و حالا اون تجربه‌ها رو به ساده‌ترین و کاربردی‌ترین شکل به شما منتقل می‌کنه. سال‌ها تدریس هم باعث شده دقیق بدونه چطور پیچیده‌ترین مفاهیم رو طوری توضیح بده که سریع جا بیفته. نتیجه؟ شما دیگه قرار نیست مسیر یادگیری رو با آزمون و خطا و اتلاف وقت برید؛ یه نفر کنارتونه که راه رو قبلاً رفته و حالا می‌خواد شما رو مستقیم به مقصد برسونه.

نظرات
5.0
(0 نظر)
5
1
4
0
3
0
2
0
1
0
نظرات
**پرسش و پاسخ** سوال خود را مطرح کنید.
در کمتر از 10 دقیقه پاسخگوی شما هستیم

آدرس ایمیل شما منتشر نخواهد شد. فیلدهای الزامی علامت گذاری شده اند *

امتیاز:
Captcha Image
  • مدرس دورهحسین بدرنژاد
  • مدت زمان184 ساعت آموزشی
  • تعداد دانشجودرحال‌ثبت‌نام
  • تعداد جلسات1164
  • سطح مهارتاز صفر تا صد
  • زبانفارسی
  • آزمونها+20
  • امکان پرداخت اقساطیدارد
  • مدرکدارد
  • percent icon وضعیت دورهدرحال ضبط
روش پرداخت : نقدی
تومان
  • پروژه محور

    پروژه‌محور

  • پشتیبانی VIP

    پشتیبانی VIP

  • آپدیت مادام‌العمر

    آپدیت مادام‌العمر

  • ضمانت بازگشت وجه

    ضمانت بازگشت وجه


درخواست تماس
support button